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SOLITONS IN A DOWN-FLOWING FILM WITH MODERATE 

MASS FLOW RATES OF THE LIQUID 

O. Yu. Tswelodub UDC 532.51 

Using the hypothesis of self-similarity, in [ 1 ] an equation was obtained describing long-wave perturbations in a 
vertical film of  liquid with moderate  mass flow rates: 

, Oh , ~ ) h  "~ 
" T  , . c  - -  3 \at ~ 1.69 ~ )  \ ~  -4- 0.71 , @ W0x-- ~ = 0 ,  ( I )  

where Re = gh~/3p 2 ; W = o/ph2 o ; h is the shift of the surface of the film from the unperturbed level, measured in units of  

ho; and h0 is the thickness of  the unperturbed film. 

For  a steady-state running wave h = h(x - ct), from ( I )  we obtain 

(3 - -  c)h' + 6hh' - -  2 Re c2(hh')"!5 + t le(t .69 - -  c)(0.7I - -  c)h ' /3  -+- Wh ~v = 0 (2) 

(a prime means differentiation with respect to x). 

In finding soliton solutions of Eq. (2), it  can be integrated once: 

(3 - -  c)h @ 3h ~ - -  2 Rec2hh'/15 -- tle (1,69 - -  c)(0.71 - -  c)h'/3 ~\V]~": = 0. (3) 

Using the replacement 

Eq. (3) is brought to the form 

where 

Relationships (4)-(6) are valid if 

h =at-I ,  xj = bx. 

a = Wb 3, b = (Re(t,69 - -  c ) (0 j l  - -  c)/'P~u (4) 

- - c iH  +- 3H 2 - -  21nHH" -- H '  ~- H '~' = 0, 

cl = (c - -  3)(3 (z(k69 - -  c)(0,71 - -  c)))~P, 

m = c2z((1.69 - -  c)(0.Tt - -  c)'3) ~ e'15. z = (tteaiW)~/< 

c ~ t . ( ~ 9  or c % 0 . 7 t .  

(5) 

(6) 
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Thus, the problem is brought down to the solution of Eq. (5); for a given value of  m, the eigenvalue c a and the soliton 
function H are found. The values of  the velocities of  the solitons c and the corresponding values of  z(c) are found from 
(6), and of  the function of  h, from (4). 

Representing the soliton solution of  Eq. (5) in the form of  a Fourier  integral 

= ~ H~exp (ikxl) dk, H 

for determinat ion of  H k we obtain the integral equation 

It~ = (3 - -  ikm) S Hk,Hh_h,dk" /(c - -  i (k --  k3)). (7) 

By virtue of  the invariance of  Eq. (5) with respect to the replacement 

c 1 -)- - -c  1, H -~- - -H ,  xl -+ --xt ,  m -~  - -m  

it is sufficient to consider only the region of  values of the parameter  m >I- 0. Equation (7) was solved by a method 
described in [2]. co 

whether the value of  S hdx is greater or less than zero, the value of a soliton is relatively positive Depending o n  

or negative. - ~  

Figure 1 gives the dependence of  the velocity of negative solitons on the parameter  z. For  purposes of  comparison, 
the points plot  the data of  [3], in which soliton solutions close to Eq. (2) are sought. 

Figure 2 gives values of  the velocities of the positive solitons found, as a function of  z (curve 1). Such solitons 
can exist only with values of  z ~< z .  = 0.2810. Curve 2 gives the dependence of the amplitudes of these solitons on their 

velocity. Here A = ( H ~  x - H m ) a .  For  z = z .  the form of  a soliton is shown in Fig. 3. Its velocity c = 4 . 4 0 5 ,  and its 

amplitude A = 0.784. 

For  the case z << 1, soliton solutions were found in [2]. With finite values of  the parameter  z, positive sohtons 
have not  been observed earlier, although they are of  great interest, since, in an experiment,  wavy conditions are attained 
in the form of  a sequence of  positive solitons [4]. The presence of  z ,  makes it easier to understand why the thickness of  
the residual layer, over which these solitons are propagated, depends only slightly on the mass flow rate of the liquid Q. 
I f  the value of  Q is such that  z > z , ,  the flow is restructured in such a way that  the value of  the parameter  z, calculated 
from the thickness of  the residual layer, is of  the order of z , ,  and the residual mass flow rate goes over into solitons. Thus, 
knowing z ,  and Q, the number  of  solitons arising and the fraction of sections of  the film with a flat boundary can be 
evaluated. 

Such an evaluation can be useful for a number  of  problems of  heat  and mass transfer through the surface of a f'tim. 
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UNSTEADY ROTATION OF A CYLINDER IN A VISCOUS FLUID 

V.  L. S e n n i t s k i i  UDC 532.516 

The flow of  a viscous fluid around a cylinder set in rotational motion at constant angular velocity was investigated 
in [ 1, 2]. The present paper deals with the problem of  rotation, in a viscous incompressible fluid, of a round cylinder, on 
unit length of  which, beginning at t ime t = 0, there acts a constant moment  of external forces M. The fluid flow is 
assumed to be plane. At  t ~< 0 the cylinder and fluid are at rest. 

We select cylindrical coordinates r, 0, and z in such a way that  the z axis is directed along the cylinder axis. We 
assume that  the flow velocity V is independent  of  0. Then, as is easily verified, the r component  of  the vector V is zero, 
and the considered problem reduces to solution of  the equations 

ovo (02vo I OVo vo) 
o-r = v \ - ~ f  -~ ~ o~ 7 

S &Qldt = M + L 

with the following initial and boundary conditions: 

V o = O w h e n t  = 0 ,  r>~a; 
V o = a ~ w h e n r  = a ;  

Vo-+ 0 when r - +  co,  

(i) 

(2) 

(3) 
(4) 
(5) 

where V 0 is the 0 component  of  vector V; I is the moment  of  inertia of  unit length of the cylinder; ~2 is the angular 

velocity of  the cylinder; a is the radius o[  the cylinder; v is the kinematic viscosity; L _= 2~a~(OVe/Orl~== -- ~)) 
is the moment  of  viscous forces acting on unit length of the cylinder due to the fluid; p = Or; p is the density of  the 
fluid. 

To solve the posed problem we use an operational method. Converting to images in (1), (2), (4), and (5), we obtain 

0 v o ~ I �9 (6) 
' + V0 = 0; 

0 r  2 ~;- r Or  

Ip~* = M* + L*; (7) 

V~=a~q* when r = a ;  (8) 

V~ -+ 0 when r - ~  oo, (9) 

where V ~ = .  e-V~Vodt; ~ * =  e-Ptf~dt; 
0 o 

M * =  ~Z. , L * =  2 ~  ~ [-77/ ,=o- ~*); (10) 

p is a complex variable. 

The solution of  Eq. (6) satisfying conditions (8), (9) has the form 

/;1 t v-~7~! (11) 
t" pl /2~ ' 

where K, is a MacDonald function. Using (7), (10), ( i  1), we obtain 
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